Time-restricted feeding attenuates age-related cardiac decline in Drosophila.

نویسندگان

  • Shubhroz Gill
  • Hiep D Le
  • Girish C Melkani
  • Satchidananda Panda
چکیده

Circadian clocks orchestrate periods of rest or activity and feeding or fasting over the course of a 24-hour day and maintain homeostasis. To assess whether a consolidated 24-hour cycle of feeding and fasting can sustain health, we explored the effect of time-restricted feeding (TRF; food access limited to daytime 12 hours every day) on neural, peripheral, and cardiovascular physiology in Drosophila melanogaster. We detected improved sleep, prevention of body weight gain, and deceleration of cardiac aging under TRF, even when caloric intake and activity were unchanged. We used temporal gene expression profiling and validation through classical genetics to identify the TCP-1 ring complex (TRiC) chaperonin, the mitochondrial electron transport chain complexes, and the circadian clock as pathways mediating the benefits of TRF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decalepis hamiltonii root extract attenuates the age-related decline in the cognitive function in Drosophila melanogaster.

Age-associated accumulation of oxidative damage linked to decline of antioxidant defense mechanism, leads to impairment of cognitive function in many organisms. These damages can pass through generations and affect the cognitive quality of progenies. In Drosophila, classical olfactory conditioning results in the formation of different types of memory. Age-related memory impairment (AMI) causes ...

متن کامل

The impact of SPARC on age-related cardiac dysfunction and fibrosis in Drosophila

Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is un...

متن کامل

Modest overexpression of FOXO maintains cardiac proteostasis and ameliorates age‐associated functional decline

Heart performance declines with age. Impaired protein quality control (PQC), due to reduced ubiquitin-proteasome system (UPS) activity, autophagic function, and/or chaperone-mediated protein refolding, contributes to cardiac deterioration. The transcription factor FOXO participates in regulating genes involved in PQC, senescence, and numerous other processes. Here, a comprehensive approach, inv...

متن کامل

Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms b...

متن کامل

Endurance exercise prevents high-fat-diet induced heart and mobility premature aging and dsir2 expression decline in aging Drosophila

High-Fat-Diet (HFD)-induced obesity is a major contributor to heart and mobility premature aging and mortality in both Drosophila and humans. The dSir2 genes are closely related to aging, but there are few directed reports showing that whether HFD could inhibit the expression dSir2 genes. Endurance exercise can prevent fat accumulation and reverse HFD-induced cardiac dysfunction. Endurance also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 347 6227  شماره 

صفحات  -

تاریخ انتشار 2015